1 Marion and Thornton Chapter 7

Hamilton’s Principle - Lagrangian and Hamiltonian dynamics.

1.1 Problem 7.37

Fig. 1 shows a double Atwood machine. What is the tension in the strings (here of length a and b)?

In Example 7.8 of Marion and Thornton Chapter 7 an Atwood machine is done using the Lagrangian method. It doesn’t use Lagrange multipliers. All that is being asked now is that we repeat the problem using Lagrangian multipliers. We keep x_2 and y_2 as seen in Fig. 1 as variables and use the constraints on rope a and rope b: $f_a(x_1, x_2) = x_1 + x_2 - a = 0 \quad \text{(1a)}$

$f_b(y_1, y_2) = y_1 + y_2 - b = 0. \quad \text{(1b)}$

The Lagrangian is then

$U = -m_1 g x_1 - m_2 g (x_2 + y_1) - m_3 g (x_2 + y_2) \quad \text{(2a)}$

$T = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_2 (\dot{x}_2 + \dot{y}_1)^2 + \frac{1}{2} m_3 (\dot{x}_2 + \dot{y}_2)^2 \quad \text{(2b)}$

$L = \frac{1}{2} m_1 \dot{x}_1^2 + \frac{1}{2} m_2 (\dot{x}_2 + \dot{y}_1)^2 + \frac{1}{2} m_3 (\dot{x}_2 + \dot{y}_2)^2$

$+ m_1 g x_1 + m_2 g (x_2 + y_1) + m_3 g (x_2 + y_2) \quad \text{(2c)}$

Now then the Lagrange equations of motion are
Lagrange Equation for y_1

$$0 = \partial L / \partial y_1 - \frac{d}{dt} \partial L / \partial \dot{y}_1 + \lambda_a \partial f_a / \partial y_1 + \lambda_b \partial f_b / \partial y_1$$

$$= m_2 g - \frac{d}{dt} [m_2 (\ddot{x}_2 + \ddot{y}_1)] + 0 + \lambda_b$$

$$\ddot{x}_2 + \ddot{y}_1 = g + \frac{\lambda_b}{m_2} \quad (3a)$$

Lagrange Equation for y_2

$$0 = \partial L / \partial y_2 - \frac{d}{dt} \partial L / \partial \dot{y}_2 + \lambda_a \partial f_a / \partial y_2 + \lambda_b \partial f_b / \partial y_2$$

$$= m_2 g - \frac{d}{dt} [m_3 (\ddot{x}_2 + \ddot{y}_2)] + 0 + \lambda_b$$

$$\ddot{x}_2 + \ddot{y}_2 = g + \frac{\lambda_b}{m_3} \quad (3b)$$

Lagrange Equation for x_1

$$0 = \partial L / \partial x_1 - \frac{d}{dt} \partial L / \partial \dot{x}_1 + \lambda_a \partial f_a / \partial x_1 + \lambda_b \partial f_b / \partial x_1$$

$$= m_1 g - \frac{d}{dt} [m_1 \ddot{x}_1] + \lambda_a + 0$$

$$= m_1 g - m_1 \ddot{x}_1 + \lambda_a$$

$$\ddot{x}_1 = g + \frac{\lambda_a}{m_1} \quad (3c)$$

Lagrange Equation for x_2

$$0 = \partial L / \partial x_2 - \frac{d}{dt} \partial L / \partial \dot{x}_2 + \lambda_a \partial f_a / \partial x_2 + \lambda_b \partial f_b / \partial x_2$$

$$= m_2 g + m_3 g - \frac{d}{dt} [m_2 (\ddot{x}_2 + \ddot{y}_1) + m_3 (\ddot{x}_2 + \ddot{y}_2)] + \lambda_a$$

$$\lambda_a = m_2 (\ddot{x}_2 + \ddot{y}_1) + m_3 (\ddot{x}_2 + \ddot{y}_2) - (m_2 + m_3) g \quad (3d)$$

One last thing, notice from the constraints Eq. (1) that

$$\ddot{x}_1 + \ddot{x}_2 = 0 \quad (4a)$$

$$\ddot{y}_1 + \ddot{y}_2 = 0 \quad (4b)$$
which means that we can rewrite Eq. (3) completely in terms of \(x_1 \) and \(y_1 \)

\[
\ddot{x}_1 - \ddot{y}_1 = - \left(g + \frac{\lambda_b}{m_2} \right) \tag{5a}
\]

\[
\ddot{x}_1 + \ddot{y}_1 = - \left(g + \frac{\lambda_b}{m_3} \right) \tag{5b}
\]

\[
0 = g + \frac{\lambda_a}{m_1} - \ddot{x}_1 \tag{5c}
\]

\[
\lambda_a = - m_2 (\ddot{x}_1 - \ddot{y}_1) - m_3 (\ddot{x}_1 + \ddot{y}_1) - (m_2 + m_3) g. \tag{5d}
\]

Substituting the first two (Eq. (5a) and Eq. (5b)) into the last gives

\[
\lambda_a = - m_2 (\ddot{x}_1 - \ddot{y}_1) - m_3 (\ddot{x}_1 + \ddot{y}_1) - (m_2 + m_3) g
\]

Then substitute \(\lambda_a \) into Eq. (5c) to get

\[
0 = g + \frac{\lambda_a}{m_1} - \ddot{x}_1
\]

\[
= g + \frac{\lambda_a}{m_1} + g + \frac{\lambda_b}{2m_2} + \frac{\lambda_b}{2m_3}
\]

\[
= 2g + \frac{2\lambda_b}{m_1} + \frac{\lambda_b}{2m_2} + \frac{\lambda_b}{2m_3}
\]

\[
= 4g + \lambda_b \left(\frac{4}{m_1} + \frac{1}{m_2} + \frac{1}{m_3} \right)
\]

\[
\lambda_b = - \frac{4g}{\frac{4}{m_1} + \frac{1}{m_2} + \frac{1}{m_3}}
\]

\[
\lambda_b = - \frac{4g m_1 m_2 m_3}{4m_2 m_3 + m_1 m_3 + m_1 m_2}. \tag{6}
\]

We’ve done all the work now we just identify the forces that ensure the constraints are met are the tensions in the ropes \(a \) and \(b \). The tension in the first rope \(a \) on \(m_1 \) is

\[
F_a = \lambda_a \frac{\partial f_a}{\partial x_1} = \lambda_a = 2\lambda_b \tag{6a}
\]

\[
F_a = - \frac{8g m_1 m_2 m_3}{4m_2 m_3 + m_1 m_3 + m_1 m_2}. \tag{8a}
\]
The tension on robe b for mass m_2 is

$$F_b = \lambda_b \frac{\partial f_b}{\partial y_1} = \lambda_b$$

$$F_b = -\frac{4gm_1m_2m_3}{4m_2m_3 + m_1m_3 + m_1m_2}$$

and of course is the same for mass m_3.

Note the solutions for λ_a and λ_b mean that

$$\ddot{x}_1 = g + \frac{\lambda_a}{m_1}$$

$$\ddot{x}_1 = g \left(1 - \frac{4m_2m_3}{4m_2m_3 + m_1m_3 + m_1m_2}\right)$$

(9a)

$$\ddot{x}_2 = -\ddot{x}_1$$

(9b)

$$\ddot{y}_1 = -\left(g + \frac{\lambda_b}{m_3}\right) - \ddot{x}_1$$

$$\ddot{y}_1 = - \left(g + \frac{\lambda_b}{m_3}\right) - g - \frac{2\lambda_b}{m_1}$$

$$\ddot{y}_1 = -2g - \frac{m_1 + 2m_3}{m_1 m_3} \lambda_b$$

$$\ddot{y}_1 = -2g + \frac{m_1 + 2m_3}{m_1 m_3} \frac{4gm_1m_2m_3}{4m_2m_3 + m_1m_3 + m_1m_2}$$

$$\ddot{y}_1 = 2g \left(\frac{2m_1m_2 + 4m_2m_3}{4m_2m_3 + m_1m_3 + m_1m_2} - 1\right)$$

(9c)

$$\ddot{y}_2 = -\ddot{y}_1$$

(9d)